The photochemistry of rhenium(I) tricarbonyl N-heterocyclic carbene complexes.
نویسندگان
چکیده
The photophysical and photochemical properties of the new tricarbonyl rhenium(I) complexes bound to N-heterocyclic carbene ligands (NHC), fac-[Re(CO)3(N^C)X] (N^C = 1-phenyl-3-(2-pyridyl)imidazole or 1-quinolinyl-3-(2-pyridyl)imidazole; X = Cl or Br), are reported. The photophysics of these complexes highlight phosphorescent emission from triplet metal-to-ligand ((3)MLCT) excited states, typical of tricarbonyl rhenium(I) complexes, with the pyridyl-bound species displaying a ten-fold shorter excited state lifetime. On the other hand, these pyridyl-bound species display solvent-dependent photochemical CO dissociation following what appear to be two different mechanisms, with a key step being the formation of cationic tricarbonyl solvato-complexes, being themselves photochemically active. The photochemical mechanisms are illustrated with a combination of NMR, IR, UV-Vis, emission and X-ray structural characterization techniques, clearly demonstrating that the presence of the NHC ligand is responsible for the previously unobserved photochemical behavior in other photoactive tricarbonyl rhenium(I) species. The complexes bound to the quinolinyl-NHC ligand (which possess a lower-energy (3)MLCT) are photostable, suggesting that the photoreactive excited state is not any longer thermally accessible. The photochemistry of the pyridyl complexes was investigated in acetonitrile solutions and also in the presence of triethylphosphite, showing a competing and bifurcated photoreactivity promoted by the trans effect of both the NHC and phosphite ligands.
منابع مشابه
Photophysical and photochemical studies of tricarbonyl rhenium(i) N-heterocyclic carbene complexes containing azide and triazolate ligands
Rhenium(I) N-heterocyclic carbene (NHC) complexes of the type fac-[Re(CO)3(NHC)L] with either azide or triazolate ancillary ligands L and pyridyl or pyrimidyl substituted imidazolyl units have been prepared and structurally characterised, and their photophysical and photochemical properties studied. All of the complexes exhibit phosphorescent emission from triplet metal-to-ligand (MCLT) excited...
متن کاملPhotophysical and photochemical trends in tricarbonyl rhenium(I) N-heterocyclic carbene complexes.
A family of tricarbonyl Re(I) complexes of the formulation fac-[Re(CO)3(NHC)L] has been synthesized and characterized, both spectroscopically and structurally. The NHC ligand represents a bidentate N-heterocyclic carbene species where the central imidazole ring is substituted at the N3 atom by a butyl, a phenyl, or a mesityl group and substituted at the N1 atom by a pyridyl, a pyrimidyl, or a q...
متن کاملRhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands.
A series of eight Rhenium(I)-N-heterocyclic carbene (NHC) complexes of the general form [ReCl(CO)3(C^C)] (where C^C is a bis(NHC) bidentate ligand), [ReCl(CO)3(C^C)]2 (where C^C is a bis-bidentate tetra-NHC ligand) and [Re(CO)3(C^N^C)](+)[X](-) (where C^N^C is a bis(NHC)-amine ligand and the counter ion X is either the ReO4(-) or PF6(-)) have been synthesised using a Ag2O transmetallation proto...
متن کاملAn N-heterocyclic carbene phenanthroline ligand: synthesis, multi-metal coordination and spectroscopic studies.
Dimetal complexes of a new N-heterocyclic carbene/phenanthroline ligand have been synthesized. Coordination of both ruthenium and rhenium to the phenanthroline moiety in combination with platinum at the carbene moiety are reported. Steady-state and time-resolved optical absorption and photoluminescence spectra were obtained for the complexes. These results illustrate significant changes occur w...
متن کاملPhotochemical and electrochemical catalytic reduction of CO2 with NHC-containing dicarbonyl rhenium(i) bipyridine complexes.
The electrochemical and photochemical catalytic reductions of CO2 using N,O and N,S-NHC-containing dicarbonyl rhenium(i) bipyridine complexes have been investigated. By replacing the carbonyl ligand in tricarbonyl rhenium(i) complexes with a weaker π-accepting ligand, the characteristic MLCT transitions shifted to lower energy. This makes photocatalysts capable of harvesting low-energy visible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 42 39 شماره
صفحات -
تاریخ انتشار 2013